EconPapers    
Economics at your fingertips  
 

TBDQ: A Pragmatic Task-Based Method to Data Quality Assessment and Improvement

Reza Vaziri, Mehran Mohsenzadeh and Jafar Habibi

PLOS ONE, 2016, vol. 11, issue 5, 1-30

Abstract: Organizations are increasingly accepting data quality (DQ) as a major key to their success. In order to assess and improve DQ, methods have been devised. Many of these methods attempt to raise DQ by directly manipulating low quality data. Such methods operate reactively and are suitable for organizations with highly developed integrated systems. However, there is a lack of a proactive DQ method for businesses with weak IT infrastructure where data quality is largely affected by tasks that are performed by human agents. This study aims to develop and evaluate a new method for structured data, which is simple and practical so that it can easily be applied to real world situations. The new method detects the potentially risky tasks within a process, and adds new improving tasks to counter them. To achieve continuous improvement, an award system is also developed to help with the better selection of the proposed improving tasks. The task-based DQ method (TBDQ) is most appropriate for small and medium organizations, and simplicity in implementation is one of its most prominent features. TBDQ is case studied in an international trade company. The case study shows that TBDQ is effective in selecting optimal activities for DQ improvement in terms of cost and improvement.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154508 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 54508&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0154508

DOI: 10.1371/journal.pone.0154508

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0154508