EconPapers    
Economics at your fingertips  
 

Alarm Variables for Dengue Outbreaks: A Multi-Centre Study in Asia and Latin America

Leigh R Bowman, Gustavo S Tejeda, Giovanini E Coelho, Lokman H Sulaiman, Balvinder S Gill, Philip J McCall, Piero L Olliaro, Silvia R Ranzinger, Luong C Quang, Ronald S Ramm, Axel Kroeger and Max G Petzold

PLOS ONE, 2016, vol. 11, issue 6, 1-23

Abstract: Background: Worldwide, dengue is an unrelenting economic and health burden. Dengue outbreaks have become increasingly common, which place great strain on health infrastructure and services. Early warning models could allow health systems and vector control programmes to respond more cost-effectively and efficiently. Methodology/Principal Findings: The Shewhart method and Endemic Channel were used to identify alarm variables that may predict dengue outbreaks. Five country datasets were compiled by epidemiological week over the years 2007–2013. These data were split between the years 2007–2011 (historic period) and 2012–2013 (evaluation period). Associations between alarm/ outbreak variables were analysed using logistic regression during the historic period while alarm and outbreak signals were captured during the evaluation period. These signals were combined to form alarm/ outbreak periods, where 2 signals were equal to 1 period. Alarm periods were quantified and used to predict subsequent outbreak periods. Across Mexico and Dominican Republic, an increase in probable cases predicted outbreaks of hospitalised cases with sensitivities and positive predictive values (PPV) of 93%/ 83% and 97%/ 86% respectively, at a lag of 1–12 weeks. An increase in mean temperature ably predicted outbreaks of hospitalised cases in Mexico and Brazil, with sensitivities and PPVs of 79%/ 73% and 81%/ 46% respectively, also at a lag of 1–12 weeks. Mean age was predictive of hospitalised cases at sensitivities and PPVs of 72%/ 74% and 96%/ 45% in Mexico and Malaysia respectively, at a lag of 4–16 weeks. Conclusions/Significance: An increase in probable cases was predictive of outbreaks, while meteorological variables, particularly mean temperature, demonstrated predictive potential in some countries, but not all. While it is difficult to define uniform variables applicable in every country context, the use of probable cases and meteorological variables in tailored early warning systems could be used to highlight the occurrence of dengue outbreaks or indicate increased risk of dengue transmission.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0157971 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 57971&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0157971

DOI: 10.1371/journal.pone.0157971

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-29
Handle: RePEc:plo:pone00:0157971