EconPapers    
Economics at your fingertips  
 

Joint Lung CT Image Segmentation: A Hierarchical Bayesian Approach

Wenjun Cheng, Luyao Ma, Tiejun Yang, Jiali Liang and Yan Zhang

PLOS ONE, 2016, vol. 11, issue 9, 1-13

Abstract: Accurate lung CT image segmentation is of great clinical value, especially when it comes to delineate pathological regions including lung tumor. In this paper, we present a novel framework that jointly segments multiple lung computed tomography (CT) images via hierarchical Dirichlet process (HDP). In specifics, based on the assumption that lung CT images from different patients share similar image structure (organ sets and relative positioning), we derive a mathematical model to segment them simultaneously so that shared information across patients could be utilized to regularize each individual segmentation. Moreover, compared to many conventional models, the algorithm requires little manual involvement due to the nonparametric nature of Dirichlet process (DP). We validated proposed model upon clinical data consisting of healthy and abnormal (lung cancer) patients. We demonstrate that, because of the joint segmentation fashion, more accurate and consistent segmentations could be obtained.

Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0162211 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 62211&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0162211

DOI: 10.1371/journal.pone.0162211

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0162211