Exploring the Efficacy of Pooled Stools in Fecal Microbiota Transplantation for Microbiota-Associated Chronic Diseases
Abbas Kazerouni and
Lawrence M Wein
PLOS ONE, 2017, vol. 12, issue 1, 1-13
Abstract:
Fecal microbiota transplantation is being assessed as a treatment for chronic microbiota-related diseases such as ulcerative colitis. Results from an initial randomized trial suggest that remission rates depend on unobservable features of the fecal donors and observable features of the patients. We use mathematical modeling to assess the efficacy of pooling stools from different donors during multiple rounds of treatment. In the model, there are two types of patients and two types of donors, where the patient type is observable and the donor type (effective or not effective) is not observable. In the model, clinical outcomes from earlier rounds of treatment are used to estimate the current likelihood that each donor is effective, and then each patient in each round is treated by a pool of donors that are currently deemed to be the most effective. Relative to the no-pooling case, pools of size two or three significantly increase the proportion of patients in remission during the first several rounds of treatment. Although based on data from a single randomized trial, our modeling suggests that pooling of stools – via daily cycling of encapsulated stool from several different donors – may be beneficial in fecal microbiota transplantation for chronic microbiota-related diseases.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163956 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 63956&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0163956
DOI: 10.1371/journal.pone.0163956
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).