EconPapers    
Economics at your fingertips  
 

Determining the Stationarity Distance via a Reversible Stochastic Process

Marios Poulos

PLOS ONE, 2016, vol. 11, issue 10, 1-23

Abstract: The problem of controlling stationarity involves an important aspect of forecasting, in which a time series is analyzed in terms of levels or differences. In the literature, non-parametric stationary tests, such as the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests, have been shown to be very important; however, they are affected by problems with the reliability of lag and sample size selection. To date, no theoretical criterion has been proposed for the lag-length selection for tests of the null hypothesis of stationarity. Their use should be avoided, even for the purpose of so-called ‘confirmation’. The aim of this study is to introduce a new method that measures the distance by obtaining each numerical series from its own time-reversed series. This distance is based on a novel stationary ergodic process, in which the stationary series has reversible symmetric features, and is calculated using the Dynamic Time-warping (DTW) algorithm in a self-correlation procedure. Furthermore, to establish a stronger statistical foundation for this method, the F-test is used as a statistical control and is a suggestion for future statistical research on resolving the problem of a sample of limited size being introduced. Finally, as described in the theoretical and experimental documentation, this distance indicates the degree of non-stationarity of the times series.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164110 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 64110&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0164110

DOI: 10.1371/journal.pone.0164110

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0164110