EconPapers    
Economics at your fingertips  
 

Validation of a Bayesian Adaptive Estimation Technique in the Stop-Signal Task

Evan J Livesey and David J Livesey

PLOS ONE, 2016, vol. 11, issue 11, 1-20

Abstract: The Stop Signal Task (SST), a commonly used measure of response inhibition, uses standard psychophysical methods to gain an estimate of the time needed to withhold a prepotent response. Under some circumstances, conventional forms of the SST are impractical to use because of the large number of trials necessary to gain a reliable estimate of the speed of inhibition. Here we applied to the SST an adaptive method for estimating psychometric parameters that can find reliable threshold estimates over a relatively small number of trials. The Ψ adaptive staircase, which uses a Bayesian algorithm to find the most likely parameters of a psychophysical function, was used to estimate the critical stop signal delay at which the probability of successful response inhibition equals 0.5. Using computational modeling and adult participants, estimates of stop signal reaction time (SSRT) based on the Ψ staircase were compared to estimates using the method of constant stimuli and a standard staircase method of adjustment. Results demonstrate that a reliable estimate of SSRT can be gained very quickly (20–30 stop trials), making the method very useful for testing populations that cannot maintain concentration for long periods or for rapidly obtaining multiple SSRT estimates from healthy adult participants.

Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0165525 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 65525&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0165525

DOI: 10.1371/journal.pone.0165525

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-29
Handle: RePEc:plo:pone00:0165525