EconPapers    
Economics at your fingertips  
 

Identification of Genes Discriminating Multiple Sclerosis Patients from Controls by Adapting a Pathway Analysis Method

Lei Zhang, Linlin Wang, Pu Tian and Suyan Tian

PLOS ONE, 2016, vol. 11, issue 11, 1-13

Abstract: The focus of analyzing data from microarray experiments has shifted from the identification of associated individual genes to that of associated biological pathways or gene sets. In bioinformatics, a feature selection algorithm is usually used to cope with the high dimensionality of microarray data. In addition to those algorithms that use the biological information contained within a gene set as a priori to facilitate the process of feature selection, various gene set analysis methods can be applied directly or modified readily for the purpose of feature selection. Significance analysis of microarray to gene-set reduction analysis (SAM-GSR) algorithm, a novel direction of gene set analysis, is one of such methods. Here, we explore the feature selection property of SAM-GSR and provide a modification to better achieve the goal of feature selection. In a multiple sclerosis (MS) microarray data application, both SAM-GSR and our modification of SAM-GSR perform well. Our results show that SAM-GSR can carry out feature selection indeed, and modified SAM-GSR outperforms SAM-GSR. Given pathway information is far from completeness, a statistical method capable of constructing biologically meaningful gene networks is of interest. Consequently, both SAM-GSR algorithms will be continuously revaluated in our future work, and thus better characterized.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0165543 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 65543&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0165543

DOI: 10.1371/journal.pone.0165543

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0165543