Semi-Supervised Feature Transformation for Tissue Image Classification
Kenji Watanabe,
Takumi Kobayashi and
Toshikazu Wada
PLOS ONE, 2016, vol. 11, issue 12, 1-20
Abstract:
Various systems have been proposed to support biological image analysis, with the intent of decreasing false annotations and reducing the heavy burden on biologists. These systems generally comprise a feature extraction method and a classification method. Task-oriented methods for feature extraction leverage characteristic images for each problem, and they are very effective at improving the classification accuracy. However, it is difficult to utilize such feature extraction methods for versatile task in practice, because few biologists specialize in Computer Vision and/or Pattern Recognition to design the task-oriented methods. Thus, in order to improve the usability of these supporting systems, it will be useful to develop a method that can automatically transform the image features of general propose into the effective form toward the task of their interest. In this paper, we propose a semi-supervised feature transformation method, which is formulated as a natural coupling of principal component analysis (PCA) and linear discriminant analysis (LDA) in the framework of graph-embedding. Compared with other feature transformation methods, our method showed favorable classification performance in biological image analysis.
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0166413 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 66413&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0166413
DOI: 10.1371/journal.pone.0166413
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().