EconPapers    
Economics at your fingertips  
 

Seed Quality Traits Can Be Predicted with High Accuracy in Brassica napus Using Genomic Data

Jun Zou, Yusheng Zhao, Peifa Liu, Lei Shi, Xiaohua Wang, Meng Wang, Jinling Meng and Jochen Christoph Reif

PLOS ONE, 2016, vol. 11, issue 11, 1-22

Abstract: Improving seed oil yield and quality are central targets in rapeseed (Brassica napus) breeding. The primary goal of our study was to examine and compare the potential and the limits of marker-assisted selection and genome-wide prediction of six important seed quality traits of B. napus. Our study is based on a bi-parental population comprising 202 doubled haploid lines and a diverse validation set including 117 B. napus inbred lines derived from interspecific crosses between B. rapa and B. carinata. We used phenotypic data for seed oil, protein, erucic acid, linolenic acid, stearic acid, and glucosinolate content. All lines were genotyped with a 60k SNP array. We performed five-fold cross-validations in combination with linkage mapping and four genome-wide prediction approaches in the bi-parental population. Quantitative trait loci (QTL) with large effects were detected for erucic acid, stearic acid, and glucosinolate content, blazing the trail for marker-assisted selection. Despite substantial differences in the complexity of the genetic architecture of the six traits, genome-wide prediction models had only minor impacts on the prediction accuracies. We evaluated the effects of training population size, marker density and phenotyping intensity on the prediction accuracy. The prediction accuracy in the independent and genetically very distinct validation set still amounted to 0.14 for protein content and 0.17 for oil content reflecting the utility of the developed calibration models even in very diverse backgrounds.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0166624 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 66624&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0166624

DOI: 10.1371/journal.pone.0166624

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0166624