EconPapers    
Economics at your fingertips  
 

The Creation and Statistical Evaluation of a Deterministic Model of the Human Bronchial Tree from HRCT Images

Spyridon Montesantos, Ira Katz, Marine Pichelin and Georges Caillibotte

PLOS ONE, 2016, vol. 11, issue 12, 1-23

Abstract: A quantitative description of the morphology of lung structure is essential prior to any form of predictive modeling of ventilation or aerosol deposition implemented within the lung. The human lung is a very complex organ, with airway structures that span two orders of magnitude and having a multitude of interfaces between air, tissue and blood. As such, current medical imaging protocols cannot provide medical practitioners and researchers with in-vivo knowledge of deeper lung structures. In this work a detailed algorithm for the generation of an individualized 3D deterministic model of the conducting part of the human tracheo-bronchial tree is described. Distinct initial conditions were obtained from the high-resolution computed tomography (HRCT) images of seven healthy volunteers. The algorithm developed is fractal in nature and is implemented as a self-similar space sub-division procedure. The expansion process utilizes physiologically realistic relationships and thresholds to produce an anatomically consistent human airway tree. The model was validated through extensive statistical analysis of the results and comparison of the most common morphological features with previously published morphometric studies and other equivalent models. The resulting trees were shown to be in good agreement with published human lung geometric characteristics and can be used to study, among other things, structure-function relationships in simulation studies.

Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0168026 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 68026&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0168026

DOI: 10.1371/journal.pone.0168026

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0168026