Quantum Decision Theory in Simple Risky Choices
Maroussia Favre,
Amrei Wittwer,
Hans Rudolf Heinimann,
Vyacheslav I Yukalov and
Didier Sornette
PLOS ONE, 2016, vol. 11, issue 12, 1-29
Abstract:
Quantum decision theory (QDT) is a recently developed theory of decision making based on the mathematics of Hilbert spaces, a framework known in physics for its application to quantum mechanics. This framework formalizes the concept of uncertainty and other effects that are particularly manifest in cognitive processes, which makes it well suited for the study of decision making. QDT describes a decision maker’s choice as a stochastic event occurring with a probability that is the sum of an objective utility factor and a subjective attraction factor. QDT offers a prediction for the average effect of subjectivity on decision makers, the quarter law. We examine individual and aggregated (group) data, and find that the results are in good agreement with the quarter law at the level of groups. At the individual level, it appears that the quarter law could be refined in order to reflect individual characteristics. This article revisits the formalism of QDT along a concrete example and offers a practical guide to researchers who are interested in applying QDT to a dataset of binary lotteries in the domain of gains.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0168045 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 68045&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0168045
DOI: 10.1371/journal.pone.0168045
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().