Analysis of a Smartphone-Based Architecture with Multiple Mobility Sensors for Fall Detection
Eduardo Casilari,
Jose Antonio Santoyo-Ramón and
Jose Manuel Cano-García
PLOS ONE, 2016, vol. 11, issue 12, 1-17
Abstract:
During the last years, many research efforts have been devoted to the definition of Fall Detection Systems (FDSs) that benefit from the inherent computing, communication and sensing capabilities of smartphones. However, employing a smartphone as the unique sensor in a FDS application entails several disadvantages as long as an accurate characterization of the patient’s mobility may force to transport this personal device on an unnatural position. This paper presents a smartphone-based architecture for the automatic detection of falls. The system incorporates a set of small sensing motes that can communicate with the smartphone to help in the fall detection decision. The deployed architecture is systematically evaluated in a testbed with experimental users in order to determine the number and positions of the sensors that optimize the effectiveness of the FDS, as well as to assess the most convenient role of the smartphone in the architecture.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0168069 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 68069&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0168069
DOI: 10.1371/journal.pone.0168069
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().