Generalising Ward’s Method for Use with Manhattan Distances
Trudie Strauss and
Michael Johan von Maltitz
PLOS ONE, 2017, vol. 12, issue 1, 1-21
Abstract:
The claim that Ward’s linkage algorithm in hierarchical clustering is limited to use with Euclidean distances is investigated. In this paper, Ward’s clustering algorithm is generalised to use with l1 norm or Manhattan distances. We argue that the generalisation of Ward’s linkage method to incorporate Manhattan distances is theoretically sound and provide an example of where this method outperforms the method using Euclidean distances. As an application, we perform statistical analyses on languages using methods normally applied to biology and genetic classification. We aim to quantify differences in character traits between languages and use a statistical language signature based on relative bi-gram (sequence of two letters) frequencies to calculate a distance matrix between 32 Indo-European languages. We then use Ward’s method of hierarchical clustering to classify the languages, using the Euclidean distance and the Manhattan distance. Results obtained from using the different distance metrics are compared to show that the Ward’s algorithm characteristic of minimising intra-cluster variation and maximising inter-cluster variation is not violated when using the Manhattan metric.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0168288 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 68288&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0168288
DOI: 10.1371/journal.pone.0168288
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().