EconPapers    
Economics at your fingertips  
 

Multi-objective AGV scheduling in an FMS using a hybrid of genetic algorithm and particle swarm optimization

Maryam Mousavi, Hwa Jen Yap, Siti Nurmaya Musa, Farzad Tahriri and Siti Zawiah Md Dawal

PLOS ONE, 2017, vol. 12, issue 3, 1-24

Abstract: Flexible manufacturing system (FMS) enhances the firm’s flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs’ battery charge. Assessment of the numerical examples’ scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169817 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 69817&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0169817

DOI: 10.1371/journal.pone.0169817

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0169817