EconPapers    
Economics at your fingertips  
 

Stock assessment and end-to-end ecosystem models alter dynamics of fisheries data

Laura S Storch, Sarah M Glaser, Hao Ye and Andrew A Rosenberg

PLOS ONE, 2017, vol. 12, issue 2, 1-11

Abstract: Although all models are simplified approximations of reality, they remain useful tools for understanding, predicting, and managing populations and ecosystems. However, a model’s utility is contingent on its suitability for a given task. Here, we examine two model types: single-species fishery stock assessment and multispecies marine ecosystem models. Both are efforts to predict trajectories of populations and ecosystems to inform fisheries management and conceptual understanding. However, many of these ecosystems exhibit nonlinear dynamics, which may not be represented in the models. As a result, model outputs may underestimate variability and overestimate stability. Using nonlinear forecasting methods, we compare predictability and nonlinearity of model outputs against model inputs using data and models for the California Current System. Compared with model inputs, time series of model-processed outputs show more predictability but a higher prevalence of linearity, suggesting that the models misrepresent the actual predictability of the modeled systems. Thus, caution is warranted: using such models for management or scenario exploration may produce unforeseen consequences, especially in the context of unknown future impacts.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0171644 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 71644&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0171644

DOI: 10.1371/journal.pone.0171644

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0171644