EconPapers    
Economics at your fingertips  
 

Single particle maximum likelihood reconstruction from superresolution microscopy images

Timothée Verdier, Julia Gunzenhauser, Suliana Manley and Martin Castelnovo

PLOS ONE, 2017, vol. 12, issue 3, 1-18

Abstract: Point localization superresolution microscopy enables fluorescently tagged molecules to be imaged beyond the optical diffraction limit, reaching single molecule localization precisions down to a few nanometers. For small objects whose sizes are few times this precision, localization uncertainty prevents the straightforward extraction of a structural model from the reconstructed images. We demonstrate in the present work that this limitation can be overcome at the single particle level, requiring no particle averaging, by using a maximum likelihood reconstruction (MLR) method perfectly suited to the stochastic nature of such superresolution imaging. We validate this method by extracting structural information from both simulated and experimental PALM data of immature virus-like particles of the Human Immunodeficiency Virus (HIV-1). MLR allows us to measure the radii of individual viruses with precision of a few nanometers and confirms the incomplete closure of the viral protein lattice. The quantitative results of our analysis are consistent with previous cryoelectron microscopy characterizations. Our study establishes the framework for a method that can be broadly applied to PALM data to determine the structural parameters for an existing structural model, and is particularly well suited to heterogeneous features due to its single particle implementation.

Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172943 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 72943&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0172943

DOI: 10.1371/journal.pone.0172943

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0172943