Model-based quantification of metabolic interactions from dynamic microbial-community data
Mark Hanemaaijer,
Brett G Olivier,
Wilfred F M Röling,
Frank J Bruggeman and
Bas Teusink
PLOS ONE, 2017, vol. 12, issue 3, 1-19
Abstract:
An important challenge in microbial ecology is to infer metabolic-exchange fluxes between growing microbial species from community-level data, concerning species abundances and metabolite concentrations. Here we apply a model-based approach to integrate such experimental data and thereby infer metabolic-exchange fluxes. We designed a synthetic anaerobic co-culture of Clostridium acetobutylicum and Wolinella succinogenes that interact via interspecies hydrogen transfer and applied different environmental conditions for which we expected the metabolic-exchange rates to change. We used stoichiometric models of the metabolism of the two microorganisms that represents our current physiological understanding and found that this understanding - the model - is sufficient to infer the identity and magnitude of the metabolic-exchange fluxes and it suggested unexpected interactions. Where the model could not fit all experimental data, it indicates specific requirement for further physiological studies. We show that the nitrogen source influences the rate of interspecies hydrogen transfer in the co-culture. Additionally, the model can predict the intracellular fluxes and optimal metabolic exchange rates, which can point to engineering strategies. This study therefore offers a realistic illustration of the strengths and weaknesses of model-based integration of heterogenous data that makes inference of metabolic-exchange fluxes possible from community-level experimental data.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0173183 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 73183&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0173183
DOI: 10.1371/journal.pone.0173183
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().