EconPapers    
Economics at your fingertips  
 

The performance of MR perfusion-weighted imaging for the differentiation of high-grade glioma from primary central nervous system lymphoma: A systematic review and meta-analysis

Weilin Xu, Qun Wang, Anwen Shao, Bainan Xu and Jianmin Zhang

PLOS ONE, 2017, vol. 12, issue 3, 1-15

Abstract: It is always a great challenge to distinguish high-grade glioma (HGG) from primary central nervous system lymphoma (PCNSL). We conducted a meta-analysis to assess the performance of MR perfusion-weighted imaging (PWI) in differentiating HGG from PCNSL. The heterogeneity and threshold effect were evaluated, and the sensitivity (SEN), specificity (SPE) and areas under summary receiver operating characteristic curve (SROC) were calculated. Fourteen studies with a total of 598 participants were included in this meta-analysis. The results indicated that PWI had a high level of accuracy (area under the curve (AUC) = 0.9415) for differentiating HGG from PCNSL by using the best parameter from each study. The dynamic susceptibility-contrast (DSC) technique might be an optimal index for distinguishing HGGs from PCNSLs (AUC = 0.9812). Furthermore, the DSC had the best sensitivity 0.963 (95%CI: 0.924, 0.986), whereas the arterial spin-labeling (ASL) displayed the best specificity 0.896 (95% CI: 0.781, 0.963) among those techniques. However, the variability of the optimal thresholds from the included studies suggests that further evaluation and standardization are needed before the techniques can be extensively clinically used.

Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0173430 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 73430&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0173430

DOI: 10.1371/journal.pone.0173430

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0173430