EconPapers    
Economics at your fingertips  
 

Uncovering noisy social signals: Using optimization methods from experimental physics to study social phenomena

Maurits Kaptein, Robin van Emden and Davide Iannuzzi

PLOS ONE, 2017, vol. 12, issue 3, 1-14

Abstract: Due to the ubiquitous presence of treatment heterogeneity, measurement error, and contextual confounders, numerous social phenomena are hard to study. Precise control of treatment variables and possible confounders is often key to the success of studies in the social sciences, yet often proves out of the realm of control of the experimenter. To amend this situation we propose a novel approach coined “lock-in feedback” which is based on a method that is routinely used in high-precision physics experiments to extract small signals out of a noisy environment. Here, we adapt the method to noisy social signals in multiple dimensions and evaluate it by studying an inherently noisy topic: the perception of (subjective) beauty. We show that the lock-in feedback approach allows one to select optimal treatment levels despite the presence of considerable noise. Furthermore, through the introduction of an external contextual shock we demonstrate that we can find relationships between noisy variables that were hitherto unknown. We therefore argue that lock-in methods may provide a valuable addition to the social scientist’s experimental toolbox and we explicitly discuss a number of future applications.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174182 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 74182&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0174182

DOI: 10.1371/journal.pone.0174182

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0174182