EconPapers    
Economics at your fingertips  
 

ML2Motif—Reliable extraction of discriminative sequence motifs from learning machines

Marina M -C Vidovic, Marius Kloft, Klaus-Robert Müller and Nico Görnitz

PLOS ONE, 2017, vol. 12, issue 3, 1-22

Abstract: High prediction accuracies are not the only objective to consider when solving problems using machine learning. Instead, particular scientific applications require some explanation of the learned prediction function. For computational biology, positional oligomer importance matrices (POIMs) have been successfully applied to explain the decision of support vector machines (SVMs) using weighted-degree (WD) kernels. To extract relevant biological motifs from POIMs, the motifPOIM method has been devised and showed promising results on real-world data. Our contribution in this paper is twofold: as an extension to POIMs, we propose gPOIM, a general measure of feature importance for arbitrary learning machines and feature sets (including, but not limited to, SVMs and CNNs) and devise a sampling strategy for efficient computation. As a second contribution, we derive a convex formulation of motifPOIMs that leads to more reliable motif extraction from gPOIMs. Empirical evaluations confirm the usefulness of our approach on artificially generated data as well as on real-world datasets.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174392 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 74392&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0174392

DOI: 10.1371/journal.pone.0174392

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-29
Handle: RePEc:plo:pone00:0174392