Independent association between socioeconomic indicators and macro- and micro-nutrient intake in Switzerland
Carlos de Mestral,
Pedro Marques-Vidal,
Jean-Michel Gaspoz,
Jean-Marc Theler and
Idris Guessous
PLOS ONE, 2017, vol. 12, issue 4, 1-15
Abstract:
Background: Socioeconomic differences in diet are rarely assessed with more than one indicator. We aimed to assess differences in macro- and micro-nutrient intake in both sexes according to education, income, and occupation. Methods: We used data from validated food frequency questionnaire measured dietary intake in 5087 participants (2157 women) from yearly adult population-based cross-sectional surveys conducted from 2005 to 2012 in the canton of Geneva, Switzerland. We used two ANOVA models: age-adjusted and multivariable adjusted simultaneously for all three socioeconomic indicators. Results: Low-education men consumed more calcium but less vitamin D than high-education men; low-income men consumed less total and animal protein (80.9±0.9 vs 84.0±0.6 g/d; 55.6±1.0 vs 59.5±0.7 g/d) and more total carbohydrates and sugars (246±2 vs 235±2 g/d; 108±2 vs 103±1 g/d) than high-income men. Occupation and diet showed no association. Low-education women consumed less vegetable protein (20.7±0.2 vs 21.6±0.2 g/d), fibre (15.7±0.3 vs 16.8±0.2 g/d), and carotene (4222±158 vs 4870±128 μg/d) than high-education women; low-income women consumed more total carbohydrates (206±2 vs 197±1 g/d) and less monounsaturated fat (27.7±0.4 vs 29.3±0.3 g/d) than high-income women. Finally, low-occupation women consumed more total energy (1792±27 vs 1714±15 kcal/d) and total carbohydrates (206±2 vs 200±1 g/d), but less saturated fat (23.0±0.3 vs 24.4±0.2 g/d), calcium (935±17 vs 997±10 mg/d) and vitamin D (2.5±0.1 vs 2.9±0.1 μg/d), than high-occupation women. Conclusion: In Switzerland, the influence of socioeconomic factors on nutrient intake differs by sex; income and education, but not occupation, drive differences among men; among women, all three indicators seem to play a role. Interventions to reduce inequalities should consider the influence of education, income, and occupation in diet to be most effective.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174578 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 74578&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0174578
DOI: 10.1371/journal.pone.0174578
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().