EconPapers    
Economics at your fingertips  
 

Detecting disease-associated genomic outcomes using constrained mixture of Bayesian hierarchical models for paired data

Yunfeng Li, Jarrett Morrow, Benjamin Raby, Kelan Tantisira, Scott T Weiss, Wei Huang and Weiliang Qiu

PLOS ONE, 2017, vol. 12, issue 3, 1-16

Abstract: Detecting disease-associated genomic outcomes is one of the key steps in precision medicine research. Cutting-edge high-throughput technologies enable researchers to unbiasedly test if genomic outcomes are associated with disease of interest. However, these technologies also include the challenges associated with the analysis of genome-wide data. Two big challenges are (1) how to reduce the effects of technical noise; and (2) how to handle the curse of dimensionality (i.e., number of variables are way larger than the number of samples). To tackle these challenges, we propose a constrained mixture of Bayesian hierarchical models (MBHM) for detecting disease-associated genomic outcomes for data obtained from paired/matched designs. Paired/matched designs can effectively reduce effects of confounding factors. MBHM does not involve multiple testing, hence does not have the problem of the curse of dimensionality. It also could borrow information across genes so that it can be used for whole genome data with small sample sizes.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174602 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 74602&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0174602

DOI: 10.1371/journal.pone.0174602

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0174602