Refining particle positions using circular symmetry
Alvaro Rodriguez,
Hanqing Zhang,
Krister Wiklund,
Tomas Brodin,
Jonatan Klaminder,
Patrik Andersson and
Magnus Andersson
PLOS ONE, 2017, vol. 12, issue 4, 1-23
Abstract:
Particle and object tracking is gaining attention in industrial applications and is commonly applied in: colloidal, biophysical, ecological, and micro-fluidic research. Reliable tracking information is heavily dependent on the system under study and algorithms that correctly determine particle position between images. However, in a real environmental context with the presence of noise including particular or dissolved matter in water, and low and fluctuating light conditions, many algorithms fail to obtain reliable information. We propose a new algorithm, the Circular Symmetry algorithm (C-Sym), for detecting the position of a circular particle with high accuracy and precision in noisy conditions. The algorithm takes advantage of the spatial symmetry of the particle allowing for subpixel accuracy. We compare the proposed algorithm with four different methods using both synthetic and experimental datasets. The results show that C-Sym is the most accurate and precise algorithm when tracking micro-particles in all tested conditions and it has the potential for use in applications including tracking biota in their environment.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0175015 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 75015&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0175015
DOI: 10.1371/journal.pone.0175015
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().