EconPapers    
Economics at your fingertips  
 

The improved business valuation model for RFID company based on the community mining method

Shugang Li and Zhaoxu Yu

PLOS ONE, 2017, vol. 12, issue 5, 1-15

Abstract: Nowadays, the appetite for the investment and mergers and acquisitions (M&A) activity in RFID companies is growing rapidly. Although the huge number of papers have addressed the topic of business valuation models based on statistical methods or neural network methods, only a few are dedicated to constructing a general framework for business valuation that improves the performance with network graph (NG) and the corresponding community mining (CM) method. In this study, an NG based business valuation model is proposed, where real options approach (ROA) integrating CM method is designed to predict the company’s net profit as well as estimate the company value. Three improvements are made in the proposed valuation model: Firstly, our model figures out the credibility of the node belonging to each community and clusters the network according to the evolutionary Bayesian method. Secondly, the improved bacterial foraging optimization algorithm (IBFOA) is adopted to calculate the optimized Bayesian posterior probability function. Finally, in IBFOA, bi-objective method is used to assess the accuracy of prediction, and these two objectives are combined into one objective function using a new Pareto boundary method. The proposed method returns lower forecasting error than 10 well-known forecasting models on 3 different time interval valuing tasks for the real-life simulation of RFID companies.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0175872 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 75872&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0175872

DOI: 10.1371/journal.pone.0175872

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0175872