A new two-stage method for revealing missing parts of edges in protein-protein interaction networks
Wei Zhang,
Jia Xu,
Yuanyuan Li and
Xiufen Zou
PLOS ONE, 2017, vol. 12, issue 5, 1-22
Abstract:
With the increasing availability of high-throughput data, various computational methods have recently been developed for understanding the cell through protein-protein interaction (PPI) networks at a systems level. However, due to the incompleteness of the original PPI networks those efforts have been significantly hindered. In this paper, we propose a two stage method to predict underlying links between two originally unlinked protein pairs. First, we measure gene expression and gene functional similarly between unlinked protein pairs on Saccharomyces cerevisiae benchmark network and obtain new constructed networks. Then, we select the significant part of the new predicted links by analyzing the difference between essential proteins that have been identified based on the new constructed networks and the original network. Furthermore, we validate the performance of the new method by using the reliable and comprehensive PPI dataset obtained from the STRING database and compare the new proposed method with four other random walk-based methods. Comparing the results indicates that the new proposed strategy performs well in predicting underlying links. This study provides a general paradigm for predicting new interactions between protein pairs and offers new insights into identifying essential proteins.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177029 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 77029&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0177029
DOI: 10.1371/journal.pone.0177029
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().