Socio-demographic predictors and average annual rates of caesarean section in Bangladesh between 2004 and 2014
Md Nuruzzaman Khan,
M Mofizul Islam,
Asma Ahmad Shariff,
Md Mahmudul Alam and
Md Mostafizur Rahman
PLOS ONE, 2017, vol. 12, issue 5, 1-15
Abstract:
Background: Globally the rates of caesarean section (CS) have steadily increased in recent decades. This rise is not fully accounted for by increases in clinical factors which indicate the need for CS. We investigated the socio-demographic predictors of CS and the average annual rates of CS in Bangladesh between 2004 and 2014. Methods: Data were derived from four waves of nationally representative Bangladesh Demographic and Health Survey (BDHS) conducted between 2004 and 2014. Rate of change analysis was used to calculate the average annual rate of increase in CS from 2004 to 2014, by socio-demographic categories. Multi-level logistic regression was used to identify the socio-demographic predictors of CS in a cross-sectional analysis of the 2014 BDHS data. Result: CS rates increased from 3.5% in 2004 to 23% in 2014. The average annual rate of increase in CS was higher among women of advanced maternal age (≥35 years), urban areas, and relatively high socio-economic status; with higher education, and who regularly accessed antenatal services. The multi-level logistic regression model indicated that lower (≤19) and advanced maternal age (≥35), urban location, relatively high socio-economic status, higher education, birth of few children (≤2), antenatal healthcare visits, overweight or obese were the key factors associated with increased utilization of CS. Underweight was a protective factor for CS. Conclusion: The use of CS has increased considerably in Bangladesh over the survey years. This rising trend and the risk of having CS vary significantly across regions and socio-economic status. Very high use of CS among women of relatively high socio-economic status and substantial urban-rural difference call for public awareness and practice guideline enforcement aimed at optimizing the use of CS.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177579 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 77579&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0177579
DOI: 10.1371/journal.pone.0177579
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().