High prevalence of elevated blood lead levels in both rural and urban Iowa newborns: Spatial patterns and area-level covariates
Margaret Carrel,
David Zahrieh,
Sean G Young,
Jacob Oleson,
Kelli K Ryckman,
Brian Wels,
Donald L Simmons and
Audrey Saftlas
PLOS ONE, 2017, vol. 12, issue 5, 1-17
Abstract:
Lead in maternal blood can cross the placenta and result in elevated blood lead levels in newborns, potentially producing negative effects on neurocognitive function, particularly if combined with childhood lead exposure. Little research exists, however, into the burden of elevated blood lead levels in newborns, or the places and populations in which elevated lead levels are observed in newborns, particularly in rural settings. Using ~2300 dried bloods spots collected within 1–3 days of birth among Iowa newborns, linked with the area of mother’s residence at the time of birth, we examine the spatial patterns of elevated (>5 μg/dL) blood lead levels and the ecological-level predictors of elevated blood lead levels. We find that one in five newborns exceed the 5 μg/dL action level set by the US Centers for Disease Control & Prevention (CDC). Bayesian spatial zero inflated regression indicates that elevated blood lead in newborns is associated with areas of increased pre-1940s housing and childbearing-age women with low educational status in both rural and urban settings. No differences in blood lead levels or the proportion of children exceeding 5 μg/dL are observed between urban and rural maternal residence, though a spatial cluster of elevated blood lead is observed in rural counties. These characteristics can guide the recommendation for testing of infants at well-baby appointments in places where risk factors are present, potentially leading to earlier initiation of case management. The findings also suggest that rural populations are at as great of risk of elevated blood lead levels as are urban populations. Analysis of newborn dried blood spots is an important tool for lead poisoning surveillance in newborns and can direct public health efforts towards specific places and populations where lead testing and case management will have the greatest impact.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177930 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 77930&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0177930
DOI: 10.1371/journal.pone.0177930
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().