Automated prediction of emphysema visual score using homology-based quantification of low-attenuation lung region
Mizuho Nishio,
Kazuaki Nakane,
Takeshi Kubo,
Masahiro Yakami,
Yutaka Emoto,
Mari Nishio and
Kaori Togashi
PLOS ONE, 2017, vol. 12, issue 5, 1-12
Abstract:
Objective: The purpose of this study was to investigate the relationship between visual score of emphysema and homology-based emphysema quantification (HEQ) and evaluate whether visual score was accurately predicted by machine learning and HEQ. Materials and methods: A total of 115 anonymized computed tomography images from 39 patients were obtained from a public database. Emphysema quantification of these images was performed by measuring the percentage of low-attenuation lung area (LAA%). The following values related to HEQ were obtained: nb0 and nb1. LAA% and HEQ were calculated at various threshold levels ranging from −1000 HU to −700 HU. Spearman’s correlation coefficients between emphysema quantification and visual score were calculated at the various threshold levels. Visual score was predicted by machine learning and emphysema quantification (LAA% or HEQ). Random Forest was used as a machine learning algorithm, and accuracy of prediction was evaluated by leave-one-patient-out cross validation. The difference in the accuracy was assessed using McNemar’s test. Results: The correlation coefficients between emphysema quantification and visual score were as follows: LAA% (−950 HU), 0.567; LAA% (−910 HU), 0.654; LAA% (−875 HU), 0.704; nb0 (−950 HU), 0.552; nb0 (−910 HU), 0.629; nb0 (−875 HU), 0.473; nb1 (−950 HU), 0.149; nb1 (−910 HU), 0.519; and nb1 (−875 HU), 0.716. The accuracy of prediction was as follows: LAA%, 55.7% and HEQ, 66.1%. The difference in accuracy was statistically significant (p = 0.0290). Conclusion: LAA% and HEQ at −875 HU showed a stronger correlation with visual score than those at −910 or −950 HU. HEQ was more useful than LAA% for predicting visual score.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178217 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 78217&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0178217
DOI: 10.1371/journal.pone.0178217
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().