Jaccard distance based weighted sparse representation for coarse-to-fine plant species recognition
Shanwen Zhang,
Xiaowei Wu and
Zhuhong You
PLOS ONE, 2017, vol. 12, issue 6, 1-14
Abstract:
Leaf based plant species recognition plays an important role in ecological protection, however its application to large and modern leaf databases has been a long-standing obstacle due to the computational cost and feasibility. Recognizing such limitations, we propose a Jaccard distance based sparse representation (JDSR) method which adopts a two-stage, coarse to fine strategy for plant species recognition. In the first stage, we use the Jaccard distance between the test sample and each training sample to coarsely determine the candidate classes of the test sample. The second stage includes a Jaccard distance based weighted sparse representation based classification(WSRC), which aims to approximately represent the test sample in the training space, and classify it by the approximation residuals. Since the training model of our JDSR method involves much fewer but more informative representatives, this method is expected to overcome the limitation of high computational and memory costs in traditional sparse representation based classification. Comparative experimental results on a public leaf image database demonstrate that the proposed method outperforms other existing feature extraction and SRC based plant recognition methods in terms of both accuracy and computational speed.
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178317 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 78317&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0178317
DOI: 10.1371/journal.pone.0178317
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().