EconPapers    
Economics at your fingertips  
 

A hyperspectral vessel image registration method for blood oxygenation mapping

Qian Wang, Qingli Li, Mei Zhou, Zhen Sun, Hongying Liu and Yiting Wang

PLOS ONE, 2017, vol. 12, issue 6, 1-17

Abstract: Blood oxygenation mapping by the means of optical oximetry is of significant importance in clinical trials. This paper uses hyperspectral imaging technology to obtain in vivo images for blood oxygenation detection. The experiment involves dorsal skin fold window chamber preparation which was built on adult (8–10 weeks of age) female BALB/c nu/nu mice and in vivo image acquisition which was performed by hyperspectral imaging system. To get the accurate spatial and spectral information of targets, an automatic registration scheme is proposed. An adaptive feature detection method which combines the local threshold method and the level-set filter is presented to extract target vessels. A reliable feature matching algorithm with the correlative information inherent in hyperspectral images is used to kick out the outliers. Then, the registration images are used for blood oxygenation mapping. Registration evaluation results show that most of the false matches are removed and the smooth and concentrated spectra are obtained. This intensity invariant feature detection with outliers-removing feature matching proves to be effective in hyperspectral vessel image registration. Therefore, in vivo hyperspectral imaging system by the assistance of the proposed registration scheme provides a technique for blood oxygenation research.

Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178499 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 78499&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0178499

DOI: 10.1371/journal.pone.0178499

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0178499