Gait dynamics to optimize fall risk assessment in geriatric patients admitted to an outpatient diagnostic clinic
Lisette H J Kikkert,
Maartje H de Groot,
Jos P van Campen,
Jos H Beijnen,
Tibor Hortobágyi,
Nicolas Vuillerme and
Claudine C J Lamoth
PLOS ONE, 2017, vol. 12, issue 6, 1-14
Abstract:
Fall prediction in geriatric patients remains challenging because the increased fall risk involves multiple, interrelated factors caused by natural aging and/or pathology. Therefore, we used a multi-factorial statistical approach to model categories of modifiable fall risk factors among geriatric patients to identify fallers with highest sensitivity and specificity with a focus on gait performance. Patients (n = 61, age = 79; 41% fallers) underwent extensive screening in three categories: (1) patient characteristics (e.g., handgrip strength, medication use, osteoporosis-related factors) (2) cognitive function (global cognition, memory, executive function), and (3) gait performance (speed-related and dynamic outcomes assessed by tri-axial trunk accelerometry). Falls were registered prospectively (mean follow-up 8.6 months) and one year retrospectively. Principal Component Analysis (PCA) on 11 gait variables was performed to determine underlying gait properties. Three fall-classification models were then built using Partial Least Squares–Discriminant Analysis (PLS-DA), with separate and combined analyses of the fall risk factors. PCA identified ‘pace’, ‘variability’, and ‘coordination’ as key properties of gait. The best PLS-DA model produced a fall classification accuracy of AUC = 0.93. The specificity of the model using patient characteristics was 60% but reached 80% when cognitive and gait outcomes were added. The inclusion of cognition and gait dynamics in fall classification models reduced misclassification. We therefore recommend assessing geriatric patients’ fall risk using a multi-factorial approach that incorporates patient characteristics, cognition, and gait dynamics.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178615 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 78615&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0178615
DOI: 10.1371/journal.pone.0178615
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().