EconPapers    
Economics at your fingertips  
 

DeepNano: Deep recurrent neural networks for base calling in MinION nanopore reads

Vladimír Boža, Broňa Brejová and Tomáš Vinař

PLOS ONE, 2017, vol. 12, issue 6, 1-13

Abstract: The MinION device by Oxford Nanopore produces very long reads (reads over 100 kBp were reported); however it suffers from high sequencing error rate. We present an open-source DNA base caller based on deep recurrent neural networks and show that the accuracy of base calling is much dependent on the underlying software and can be improved by considering modern machine learning methods. By employing carefully crafted recurrent neural networks, our tool significantly improves base calling accuracy on data from R7.3 version of the platform compared to the default base caller supplied by the manufacturer. On R9 version, we achieve results comparable to Nanonet base caller provided by Oxford Nanopore. Availability of an open source tool with high base calling accuracy will be useful for development of new applications of the MinION device, including infectious disease detection and custom target enrichment during sequencing.

Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178751 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 78751&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0178751

DOI: 10.1371/journal.pone.0178751

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0178751