Predicting the protein half-life in tissue from its cellular properties
Mahbubur Rahman and
Rovshan G Sadygov
PLOS ONE, 2017, vol. 12, issue 7, 1-15
Abstract:
Protein half-life is an important feature of protein homeostasis (proteostasis). The increasing number of in vivo and in vitro studies using high throughput proteomics provide estimates of the protein half-lives in tissues and cells. However, protein half-lives in cells and tissues are different. Due to the resource requirements for researching tissues, more data is available from cellular studies than tissues. We have designed a multivariate linear model for predicting protein half-life in tissue from its cellular properties. Inputs to the model are cellular half-life, abundance, intrinsically disordered sequences, and transcriptional and translational rates. Before the modeling, we determined substructures in the data using the relative distance from the regression line of the protein half-lives in tissues and cells, identifying three separate clusters. The model was trained on and applied to predict protein half-lives from murine liver, brain and heart tissues. In each tissue type we observed similar prediction patterns of protein half-lives. We found that the model provides the best results when there is a strong correlation between tissue and cell culture protein half-lives. Additionally, we clustered the protein half-lives to determine variations in correlation coefficients between the protein half-lives in the tissue versus in cell culture. The clusters identify strongly and weakly correlated protein half-lives, further improves the overall prediction and identifies sub groupings which exhibit specific characteristics. The model described herein, is generalizable to other data sets and has been implemented in a freely available R code.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180428 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 80428&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0180428
DOI: 10.1371/journal.pone.0180428
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().