EconPapers    
Economics at your fingertips  
 

Weibo sentiments and stock return: A time-frequency view

Yingying Xu, Zhixin Liu, Jichang Zhao and Chiwei Su

PLOS ONE, 2017, vol. 12, issue 7, 1-21

Abstract: This study provides new insights into the relationships between social media sentiments and the stock market in China. Based on machine learning, we classify microblogs posted on Sina Weibo, a Twitter’s variant in China into five detailed sentiments of anger, disgust, fear, joy, and sadness. Using wavelet analysis, we find close positive linkages between sentiments and the stock return, which have both frequency and time-varying features. Five detailed sentiments are positively related to the stock return for certain periods, particularly since October 2014 at medium to high frequencies of less than ten trading days, when the stock return is undergoing significant fluctuations. Sadness appears to have a closer relationship with the stock return than the other four sentiments. As to the lead-lag relationships, the stock return causes Weibo sentiments rather than reverse for most of the periods with significant linkages. Compared with polarity sentiments (negative vs. positive), detailed sentiments provide more information regarding relationships between Weibo sentiments and the stock market. The stock market exerts positive effects on bullishness and agreement of microblogs. Meanwhile, agreement leads the stock return in-phase at the frequency of approximately 40 trading days, indicating that less disagreement improves certainty about the stock market.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180723 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 80723&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0180723

DOI: 10.1371/journal.pone.0180723

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0180723