Modeling the dynamics of chromosomal alteration progression in cervical cancer: A computational model
Augusto Cabrera-Becerril,
Cruz Vargas- De-León,
Sergio Hernández,
Pedro Miramontes and
Raúl Peralta
PLOS ONE, 2017, vol. 12, issue 7, 1-14
Abstract:
Computational modeling has been applied to simulate the heterogeneity of cancer behavior. The development of Cervical Cancer (CC) is a process in which the cell acquires dynamic behavior from non-deleterious and deleterious mutations, exhibiting chromosomal alterations as a manifestation of this dynamic. To further determine the progression of chromosomal alterations in precursor lesions and CC, we introduce a computational model to study the dynamics of deleterious and non-deleterious mutations as an outcome of tumor progression. The analysis of chromosomal alterations mediated by our model reveals that multiple deleterious mutations are more frequent in precursor lesions than in CC. Cells with lethal deleterious mutations would be eliminated, which would mitigate cancer progression; on the other hand, cells with non-deleterious mutations would become dominant, which could predispose them to cancer progression. The study of somatic alterations through computer simulations of cancer progression provides a feasible pathway for insights into the transformation of cell mechanisms in humans. During cancer progression, tumors may acquire new phenotype traits, such as the ability to invade and metastasize or to become clinically important when they develop drug resistance. Non-deleterious chromosomal alterations contribute to this progression.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180882 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 80882&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0180882
DOI: 10.1371/journal.pone.0180882
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().