EconPapers    
Economics at your fingertips  
 

Link prediction on Twitter

Sanda Martinčić-Ipšić, Edvin Močibob and Matjaž Perc

PLOS ONE, 2017, vol. 12, issue 7, 1-21

Abstract: With over 300 million active users, Twitter is among the largest online news and social networking services in existence today. Open access to information on Twitter makes it a valuable source of data for research on social interactions, sentiment analysis, content diffusion, link prediction, and the dynamics behind human collective behaviour in general. Here we use Twitter data to construct co-occurrence language networks based on hashtags and based on all the words in tweets, and we use these networks to study link prediction by means of different methods and evaluation metrics. In addition to using five known methods, we propose two effective weighted similarity measures, and we compare the obtained outcomes in dependence on the selected semantic context of topics on Twitter. We find that hashtag networks yield to a large degree equal results as all-word networks, thus supporting the claim that hashtags alone robustly capture the semantic context of tweets, and as such are useful and suitable for studying the content and categorization. We also introduce ranking diagrams as an efficient tool for the comparison of the performance of different link prediction algorithms across multiple datasets. Our research indicates that successful link prediction algorithms work well in correctly foretelling highly probable links even if the information about a network structure is incomplete, and they do so even if the semantic context is rationalized to hashtags.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0181079 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 81079&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0181079

DOI: 10.1371/journal.pone.0181079

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0181079