Video summarization using line segments, angles and conic parts
Md Musfequs Salehin,
Manoranjan Paul and
Muhammad Ashad Kabir
PLOS ONE, 2017, vol. 12, issue 11, 1-22
Abstract:
Video summarization is a process to extract objects and their activities from a video and represent them in a condensed form. Existing methods for video summarization fail to detect moving (dynamic) objects in the low color contrast area of a video frame due to the pixel intensities of objects and non-objects are almost similar. However, edges of objects are prominent in the low contrast regions. Moreover, to represent objects, geometric primitives (such as lines, arcs) are distinguishable and high level shape descriptors than edges. In this paper, a novel method is proposed for video summarization using geometric primitives such as conic parts, line segments and angles. Using these features, objects are extracted from each video frame. A cost function is applied to measure the dissimilarity of locations of geometric primitives to detect the movement of objects between consecutive frames. The total distance of object movement is calculated and each video frame is assigned a probability score. Finally, a set of key frames is selected based on the probability scores as per user provided skimming ratio or system default skimming ratio. The proposed approach is evaluated using three benchmark datasets—BL-7F, Office, and Lobby. The experimental results show that our approach outperforms the state-of-the-art method in terms of accuracy.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0181636 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 81636&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0181636
DOI: 10.1371/journal.pone.0181636
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().