Reply & Supply: Efficient crowdsourcing when workers do more than answer questions
Thomas C McAndrew,
Elizaveta A Guseva and
James P Bagrow
PLOS ONE, 2017, vol. 12, issue 8, 1-21
Abstract:
Crowdsourcing works by distributing many small tasks to large numbers of workers, yet the true potential of crowdsourcing lies in workers doing more than performing simple tasks—they can apply their experience and creativity to provide new and unexpected information to the crowdsourcer. One such case is when workers not only answer a crowdsourcer’s questions but also contribute new questions for subsequent crowd analysis, leading to a growing set of questions. This growth creates an inherent bias for early questions since a question introduced earlier by a worker can be answered by more subsequent workers than a question introduced later. Here we study how to perform efficient crowdsourcing with such growing question sets. By modeling question sets as networks of interrelated questions, we introduce algorithms to help curtail the growth bias by efficiently distributing workers between exploring new questions and addressing current questions. Experiments and simulations demonstrate that these algorithms can efficiently explore an unbounded set of questions without losing confidence in crowd answers.
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0182662 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 82662&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0182662
DOI: 10.1371/journal.pone.0182662
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().