EconPapers    
Economics at your fingertips  
 

Cardiac arrest risk standardization using administrative data compared to registry data

Anne V Grossestreuer, David F Gaieski, Michael W Donnino, Joshua I M Nelson, Eric L Mutter, Brendan G Carr, Benjamin S Abella and Douglas J Wiebe

PLOS ONE, 2017, vol. 12, issue 8, 1-12

Abstract: Background: Methods for comparing hospitals regarding cardiac arrest (CA) outcomes, vital for improving resuscitation performance, rely on data collected by cardiac arrest registries. However, most CA patients are treated at hospitals that do not participate in such registries. This study aimed to determine whether CA risk standardization modeling based on administrative data could perform as well as that based on registry data. Methods and results: Two risk standardization logistic regression models were developed using 2453 patients treated from 2000–2015 at three hospitals in an academic health system. Registry and administrative data were accessed for all patients. The outcome was death at hospital discharge. The registry model was considered the “gold standard” with which to compare the administrative model, using metrics including comparing areas under the curve, calibration curves, and Bland-Altman plots. The administrative risk standardization model had a c-statistic of 0.891 (95% CI: 0.876–0.905) compared to a registry c-statistic of 0.907 (95% CI: 0.895–0.919). When limited to only non-modifiable factors, the administrative model had a c-statistic of 0.818 (95% CI: 0.799–0.838) compared to a registry c-statistic of 0.810 (95% CI: 0.788–0.831). All models were well-calibrated. There was no significant difference between c-statistics of the models, providing evidence that valid risk standardization can be performed using administrative data. Conclusions: Risk standardization using administrative data performs comparably to standardization using registry data. This methodology represents a new tool that can enable opportunities to compare hospital performance in specific hospital systems or across the entire US in terms of survival after CA.

Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0182864 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 82864&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0182864

DOI: 10.1371/journal.pone.0182864

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0182864