EconPapers    
Economics at your fingertips  
 

Modeling hypothermia induced effects for the heterogeneous ventricular tissue from cellular level to the impact on the ECG

Roland Kienast, Michael Handler, Markus Stöger, Daniel Baumgarten, Friedrich Hanser and Christian Baumgartner

PLOS ONE, 2017, vol. 12, issue 8, 1-22

Abstract: Hypothermia has a profound impact on the electrophysiological mechanisms of the heart. Experimental investigations provide a better understanding of electrophysiological alterations associated with cooling. However, there is a lack of computer models suitable for simulating the effects of hypothermia in cardio-electrophysiology. In this work, we propose a model that describes the cooling-induced electrophysiological alterations in ventricular tissue in a temperature range from 27°C to 37°C. To model the electrophysiological conditions in a 3D left ventricular tissue block it was essential to consider the following anatomical and physiological parameters in the model: the different cell types (endocardial, M, epicardial), the heterogeneous conductivities in longitudinal, transversal and transmural direction depending on the prevailing temperature, the distinct fiber orientations and the transmural repolarization sequences. Cooling-induced alterations on the morphology of the action potential (AP) of single myocardial cells thereby are described by an extension of the selected Bueno-Orovio model for human ventricular tissue using Q10 temperature coefficients. To evaluate alterations on tissue level, the corresponding pseudo electrocardiogram (pECG) was calculated. Simulations show that cooling-induced AP and pECG-related parameters, i.e. AP duration, morphology of the notch of epicardial AP, maximum AP upstroke velocity, AP rise time, QT interval, QRS duration and J wave formation are in good accordance with literature and our experimental data. The proposed model enables us to further enhance our knowledge of cooling-induced electrophysiological alterations from cellular to tissue level in the heart and may help to better understand electrophysiological mechanisms, e.g. in arrhythmias, during hypothermia.

Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0182979 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 82979&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0182979

DOI: 10.1371/journal.pone.0182979

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-29
Handle: RePEc:plo:pone00:0182979