Detection of axonal synapses in 3D two-photon images
Cher Bass,
Pyry Helkkula,
Vincenzo De Paola,
Claudia Clopath and
Anil Anthony Bharath
PLOS ONE, 2017, vol. 12, issue 9, 1-18
Abstract:
Studies of structural plasticity in the brain often require the detection and analysis of axonal synapses (boutons). To date, bouton detection has been largely manual or semi-automated, relying on a step that traces the axons before detection the boutons. If tracing the axon fails, the accuracy of bouton detection is compromised. In this paper, we propose a new algorithm that does not require tracing the axon to detect axonal boutons in 3D two-photon images taken from the mouse cortex. To find the most appropriate techniques for this task, we compared several well-known algorithms for interest point detection and feature descriptor generation. The final algorithm proposed has the following main steps: (1) a Laplacian of Gaussian (LoG) based feature enhancement module to accentuate the appearance of boutons; (2) a Speeded Up Robust Features (SURF) interest point detector to find candidate locations for feature extraction; (3) non-maximum suppression to eliminate candidates that were detected more than once in the same local region; (4) generation of feature descriptors based on Gabor filters; (5) a Support Vector Machine (SVM) classifier, trained on features from labelled data, and was used to distinguish between bouton and non-bouton candidates. We found that our method achieved a Recall of 95%, Precision of 76%, and F1 score of 84% within a new dataset that we make available for accessing bouton detection. On average, Recall and F1 score were significantly better than the current state-of-the-art method, while Precision was not significantly different. In conclusion, in this article we demonstrate that our approach, which is independent of axon tracing, can detect boutons to a high level of accuracy, and improves on the detection performance of existing approaches. The data and code (with an easy to use GUI) used in this article are available from open source repositories.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183309 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 83309&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0183309
DOI: 10.1371/journal.pone.0183309
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().