EconPapers    
Economics at your fingertips  
 

Can quartet analyses combining maximum likelihood estimation and Hennigian logic overcome long branch attraction in phylogenomic sequence data?

Patrick Kück, Mark Wilkinson, Christian Groß, Peter G Foster and Johann W Wägele

PLOS ONE, 2017, vol. 12, issue 8, 1-24

Abstract: Systematic biases such as long branch attraction can mislead commonly relied upon model-based (i.e. maximum likelihood and Bayesian) phylogenetic methods when, as is usually the case with empirical data, there is model misspecification. We present PhyQuart, a new method for evaluating the three possible binary trees for any quartet of taxa. PhyQuart was developed through a process of reciprocal illumination between a priori considerations and the results of extensive simulations. It is based on identification of site-patterns that can be considered to support a particular quartet tree taking into account the Hennigian distinction between apomorphic and plesiomorphic similarity, and employing corrections to the raw observed frequencies of site-patterns that exploit expectations from maximum likelihood estimation. We demonstrate through extensive simulation experiments that, whereas maximum likeilihood estimation performs well in many cases, it can be outperformed by PhyQuart in cases where it fails due to extreme branch length asymmetries producing long-branch attraction artefacts where there is only very minor model misspecification.

Date: 2017
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183393 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 83393&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0183393

DOI: 10.1371/journal.pone.0183393

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0183393