EconPapers    
Economics at your fingertips  
 

Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways

Lei Chen, Yu-Hang Zhang, ShaoPeng Wang, YunHua Zhang, Tao Huang and Yu-Dong Cai

PLOS ONE, 2017, vol. 12, issue 9, 1-22

Abstract: Identifying essential genes in a given organism is important for research on their fundamental roles in organism survival. Furthermore, if possible, uncovering the links between core functions or pathways with these essential genes will further help us obtain deep insight into the key roles of these genes. In this study, we investigated the essential and non-essential genes reported in a previous study and extracted gene ontology (GO) terms and biological pathways that are important for the determination of essential genes. Through the enrichment theory of GO and KEGG pathways, we encoded each essential/non-essential gene into a vector in which each component represented the relationship between the gene and one GO term or KEGG pathway. To analyze these relationships, the maximum relevance minimum redundancy (mRMR) was adopted. Then, the incremental feature selection (IFS) and support vector machine (SVM) were employed to extract important GO terms and KEGG pathways. A prediction model was built simultaneously using the extracted GO terms and KEGG pathways, which yielded nearly perfect performance, with a Matthews correlation coefficient of 0.951, for distinguishing essential and non-essential genes. To fully investigate the key factors influencing the fundamental roles of essential genes, the 21 most important GO terms and three KEGG pathways were analyzed in detail. In addition, several genes was provided in this study, which were predicted to be essential genes by our prediction model. We suggest that this study provides more functional and pathway information on the essential genes and provides a new way to investigate related problems.

Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184129 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 84129&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0184129

DOI: 10.1371/journal.pone.0184129

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0184129