Differential expression of tetraspanin superfamily members in dendritic cell subsets
Malou Zuidscherwoude,
Kuntal Worah,
Alie van der Schaaf,
Sonja I Buschow and
Annemiek B van Spriel
PLOS ONE, 2017, vol. 12, issue 9, 1-15
Abstract:
Dendritic cells (DCs), which are essential for initiating immune responses, are comprised of different subsets. Tetraspanins organize dendritic cell membranes by facilitating protein-protein interactions within the so called tetraspanin web. In this study we analyzed expression of the complete tetraspanin superfamily in primary murine (CD4+, CD8+, pDC) and human DC subsets (CD1c+, CD141+, pDC) at the transcriptome and proteome level. Different RNA and protein expression profiles for the tetraspanin genes across human and murine DC subsets were identified. Although RNA expression levels of CD37 and CD82 were not significantly different between human DC subsets, CD9 RNA was highly expressed in pDCs, while CD9 protein expression was lower. This indicates that relative RNA and protein expression levels are not always in agreement. Both murine CD8α+ DCs and its regarded human counterpart, CD141+ DCs, displayed relatively high protein levels of CD81. CD53 protein was highly expressed on human pDCs in contrast to the relatively low protein expression of most other tetraspanins. This study demonstrates that tetraspanins are differentially expressed by human and murine DC subsets which provides a valuable resource that will aid the understanding of tetraspanin function in DC biology.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184317 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 84317&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0184317
DOI: 10.1371/journal.pone.0184317
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().