EconPapers    
Economics at your fingertips  
 

tsiR: An R package for time-series Susceptible-Infected-Recovered models of epidemics

Alexander D Becker and Bryan T Grenfell

PLOS ONE, 2017, vol. 12, issue 9, 1-10

Abstract: tsiR is an open source software package implemented in the R programming language designed to analyze infectious disease time-series data. The software extends a well-studied and widely-applied algorithm, the time-series Susceptible-Infected-Recovered (TSIR) model, to infer parameters from incidence data, such as contact seasonality, and to forward simulate the underlying mechanistic model. The tsiR package aggregates a number of different fitting features previously described in the literature in a user-friendly way, providing support for their broader adoption in infectious disease research. Also included in tsiR are a number of diagnostic tools to assess the fit of the TSIR model. This package should be useful for researchers analyzing incidence data for fully-immunizing infectious diseases.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185528 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 85528&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0185528

DOI: 10.1371/journal.pone.0185528

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0185528