EconPapers    
Economics at your fingertips  
 

Automatic crack detection method for loaded coal in vibration failure process

Chengwu Li and Dihao Ai

PLOS ONE, 2017, vol. 12, issue 10, 1-21

Abstract: In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM). A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically.

Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185750 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 85750&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0185750

DOI: 10.1371/journal.pone.0185750

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0185750