EconPapers    
Economics at your fingertips  
 

EAMA: Empirically adjusted meta-analysis for large-scale simultaneous hypothesis testing in genomic experiments

Sinjini Sikdar, Somnath Datta and Susmita Datta

PLOS ONE, 2017, vol. 12, issue 10, 1-19

Abstract: Recent developments in high throughput genomic assays have opened up the possibility of testing hundreds and thousands of genes simultaneously. However, adhering to the regular statistical assumptions regarding the null distributions of test statistics in such large-scale multiple testing frameworks has the potential of leading to incorrect significance testing results and biased inference. This problem gets worse when one combines results from different independent genomic experiments with a possibility of ending up with gross false discoveries of significant genes. In this article, we develop a meta-analysis method of combining p-values from different independent experiments involving large-scale multiple testing frameworks, through empirical adjustments of the individual test statistics and p-values. Even though, it is based on various existing ideas, this specific combination is novel and potentially useful. Through simulation studies and real genomic datasets we show that our method outperforms the standard meta-analysis approach of significance testing in terms of accurately identifying the truly significant set of genes.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0187287 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 87287&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0187287

DOI: 10.1371/journal.pone.0187287

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0187287