You prime what you code: The fAIM model of priming of pop-out
Wouter Kruijne and
Martijn Meeter
PLOS ONE, 2017, vol. 12, issue 11, 1-21
Abstract:
Our visual brain makes use of recent experience to interact with the visual world, and efficiently select relevant information. This is exemplified by speeded search when target- and distractor features repeat across trials versus when they switch, a phenomenon referred to as intertrial priming. Here, we present fAIM, a computational model that demonstrates how priming can be explained by a simple feature-weighting mechanism integrated into an established model of bottom-up vision. In fAIM, such modulations in feature gains are widespread and not just restricted to one or a few features. Consequentially, priming effects result from the overall tuning of visual features to the task at hand. Such tuning allows the model to reproduce priming for different types of stimuli, including for typical stimulus dimensions such as ‘color’ and for less obvious dimensions such as ‘spikiness’ of shapes. Moreover, the model explains some puzzling findings from the literature: it shows how priming can be found for target-distractor stimulus relations rather than for their absolute stimulus values per se, without an explicit representation of relations. Similarly, it simulates effects that have been taken to reflect a modulation of priming by an observers’ goals—without any representation of goals in the model. We conclude that priming is best considered as a consequence of a general adaptation of the brain to visual input, and not as a peculiarity of visual search.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0187556 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 87556&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0187556
DOI: 10.1371/journal.pone.0187556
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).