Perceptual training to improve hip fracture identification in conventional radiographs
Weijia Chen,
David HolcDorf,
Mark W McCusker,
Frank Gaillard and
Piers D L Howe
PLOS ONE, 2017, vol. 12, issue 12, 1-11
Abstract:
Diagnosing certain fractures in conventional radiographs can be a difficult task, usually taking years to master. Typically, students are trained ad-hoc, in a primarily-rule based fashion. Our study investigated whether students can more rapidly learn to diagnose proximal neck of femur fractures via perceptual training, without having to learn an explicit set of rules. One hundred and thirty-nine students with no prior medical or radiology training were shown a sequence of plain film X-ray images of the right hip and for each image were asked to indicate whether a fracture was present. Students were told if they were correct and the location of any fracture, if present. No other feedback was given. The more able students achieved the same level of accuracy as board certified radiologists at identifying hip fractures in less than an hour of training. Surprisingly, perceptual learning was reduced when the training set was constructed to over-represent the types of images participants found more difficult to categorise. Conversely, repeating training images did not reduce post-training performance relative to showing an equivalent number of unique images. Perceptual training is an effective way of helping novices learn to identify hip fractures in X-ray images and should supplement the current education programme for students.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189192 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 89192&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0189192
DOI: 10.1371/journal.pone.0189192
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().