Identification of potential antimicrobials against Salmonella typhimurium and Listeria monocytogenes using Quantitative Structure-Activity Relation modeling
Ethan C Rath,
Hunter Gill and
Yongsheng Bai
PLOS ONE, 2017, vol. 12, issue 12, 1-17
Abstract:
The shelf-life of fresh carcasses and produce depends on the chemical and physical properties of antimicrobials currently used for treatment. For many years the gold standard of these antimicrobials has been Cetylpyridinium Chloride (CPC) a quaternary ammonium compound (QAC). CPC is very effective at removing bacterial pathogens from the surface of chicken but has not been approved for other products due to a toxic residue left behind after treatment. Currently there is also a rising trend in QAC resistant bacteria. In order to find new compounds that can combat both antimicrobial resistance and the toxic residue we have developed two Quantitative Structure-Activity Relationship (QSAR) models for Salmonella typhimurium and Listeria monocytogenes. These models have been shown to be accurate and reliable through multiple internal and external validation techniques. In processing these models we have also identified important descriptors and structures that may be key in producing a viable compound. With these models, development and testing of new compounds should be greatly simplified.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189580 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 89580&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0189580
DOI: 10.1371/journal.pone.0189580
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().